INFLUENCE OF VEGETATION ON ORGANIC PHOSPHORUS AND CARBON FORMS IN WETLAND SOILS UFIFAS

Lilit Vardanyan^{1*}, Sue Newman² and K. R. Reddy¹

¹Wetland Biogeochemistry Laboratory, Soil and Water Sciences Department, University of Florida, Gainesville, FL

²South Florida Water Management District, West Palm Beach, FL

INTRODUCTION

Treatment wetlands sequester inorganic and organic forms of phosphorus (P), the bioavailability of which regulates the potential P flux from soil to the overlying water column. Stormwater treatment areas (STAs) in the Everglades, Florida were designed to remove P from agricultural runoff prior to discharging them into the Everglades Protection Area. The quality of organic P accreted in these wetlands is influenced by the type of vegetation and nutrient status. At the same time carbon (C) source in wetlands could be sustained through C fixation by vegetation and its subsequent decomposition. Therefore, understanding the chemical nature of the forms of inorganic and organic P (OP) and organic C (OC) is critical in developing management strategies to maintain desired effluent P concentrations and for the long-term sustainability of these systems. This study was performed to address the question on how and to what extent the type of vegetation and nutrient loading alter the storage and reactivity of P and C and their forms in wetland soils.

Objective: To determine the forms and distribution of P and C in floc (surface layer), recently accreted soil (RAS), and pre-STA native peat soils along the flow path of STAs with emergent aquatic vegetation (EAV) and submerged aquatic vegetation (SAV). We hypothesized that EAV dominated flow-ways (FWs) produce more stable organic P and C than SAV dominated FWs.

	FW-1 EAV							FW-3 SAV																
		Pyro-	Alkyl-	0-				Labile	HCI-	NaOH	NaOH	Residual		Pyro-	Alkyl-	0-				Labile		NaOH	NaOH R	Residual
	Diester	Ρ	С	alkyl	Aryl-C (Carboxyl	MBP	Ро	Po	FA- P	HA- P	Р	Diesters	Ρ	С	alkyl-C	Aryl-C	Carboxyl	MBP	Ро	HCI-Po	FA- P	HA- P	Р
Monoester	0.94	0.52	-0.69	-0.14	-0.78	-0.74	0.68	0.86	0.70	0.88	0.77	0.74	0.17	-0.05	0.25	0.19	0.32	0.27	-0.01	0.24	0.46	0.19	0.23	0.28
Diester		0.60	-0.71	0.07	-0.84	-0.87	0.72	0.91	0.76	0.89	0.80	0.79		0.44	-0.58	-0.55	-0.58	-0.53	0.84	0.31	-0.35	-0.13	-0.26	0.49
Pyro-P			-0.18	0.69	-0.48	-0.56	0.73	0.47	-0.02	0.29	0.53	0.01			-0.51	-0.53	-0.59	-0.52	0.55	0.59	0.22	-0.25	-0.25	0.41
Alkyl-C				0.25	0.68	0.78	-0.32	-0.52	-0.67	-0.59	-0.57	-0.67				1.00	0.99	0.97	-0.82	-0.57	0.29	0.51	0.82	-0.73
O-alkyl-C					-0.07	-0.17	0.45	0.07	-0.36	-0.13	0.21	-0.31					0.98	0.97	-0.80	-0.60	0.24	0.53	0.84	-0.75
Aryl-C						0.90	-0.66	-0.72	-0.58	-0.73	-0.69	-0.64						0.98	-0.83	-0.54	0.32	0.55	0.78	-0.66
Carboxyl-C							-0.51	-0.66	-0.65	-0.62	-0.70	-0.63							-0.79	-0.56	0.35	0.69	0.87	-0.70
MBP								0.79	0.24	0.71	0.73	0.40								0.62	-0.24	-0.35	-0.45	0.73
Labile Po									0.76	0.95	0.85	0.84									0.50	-0.25	-0.38	0.90
HCI-Po										0.82	0.61	0.97										0.45	0.33	0.26
NaOH FA- P)										0.77	0.90											0.70	-0.28
NaOH HA- F												0.69												-0.60

RESULTS

Table 1. Correlations of Organic P forms, Organic C forms and P fractions in EAV and SAV flow-ways of STA-2

MATERIALS AND METHODS

Figure 1. Study sites

Study sites:

UNIVERSITY of FLORIDA

- STA-2 FW-1 is a 743 ha constructed wetland (also called Emerged Aquatic Vegetation - EAV FW), consists primarily of cattail (Typha domingensis).
- STA-2 FW-3 is a 928 ha constructed wetland (also called Submerged Aquatic Vegetation - SAV FW).
- Both flow-ways in STA-2 operate as parallel treatment flow-ways and receive

Figure 4. ³¹P NMR spectra for the Floc Ras and Pre-STA Soil samples from inflow, midflow, and outflow of FW-1 and FW-3.

Figure 5. Organic P (A) and C (B) forms of the Floc Ras and Pre-STA Soil samples of FW-1 and FW-3 of STA-2.

Figure 6. ¹³C NMR spectra for the Floc Ras and Pre-STA Soil samples from inflow, midflow, and outflow of FW-1 and FW-3.

	FW	Sample	Sample	Phosphorus (mg kg ⁻¹)									
		Location	Depth	NaOH- TP	Ortho phosphate	Phospho monoester	Phospho diester	Pyro phospha					
		Inflow	Floc	855	165	351	325	14					
			RAS	702	141	312	237	12					
			Pre-STA	191	41	102	45	3					
		Midflow	Floc	1091	500	315	249	27					
	FW-1		RAS	481	176	135	159	11					
			Pre-STA	194	91	64	39	ND					
		Outflow	Floc	761	225	250	239	48					
			RAS	566	165	203	170	27					
			Pre-STA	255	82	131	38	5					
		Inflow	Floc	508	224	193	84	7					
			RAS	347	146	155	46	ND					
			Pre-STA	302	116	150	36	ND					
		Midflow	Floc	259	92	86	75	6					
	FW-3		RAS	189	80	70	38	ND					
	1 1 1 0		Pre-STA	237	88	114	36	ND					
		Outflow	Floc	362	64	182	116	ND					
			RAS	215	18	140	57	ND					
			Pre-STA	330	66	233	31	ND					

FW	Sample	Sample	Carbon (g kg ⁻¹)								
	Location	Depth	Alkyl-C	O-Alkyl-C	Aryl-C	Carboxyl- C					
	Inflow	Floc	94	203	73	32					
		RAS	86	189	71	31					
		Pre-STA 1	109	207	117	52					
	Midflow	Floc	97	221	67	37					
FW-1		RAS	97	235	83	35					
		Pre-STA 1	115	211	89	45					
	Outflow	Floc	111	249	81	34					
		RAS	93	226	82	34					
		Pre-STA 1	118	211	103	49					
	Inflow	Floc	52	80	34	21					
		RAS	53	80	42	21					
		Pre-STA 1	114	190	127	43					
	Midflow	Floc	51	82	18	20					
FW-3		RAS	57	97	41	23					
		Pre-STA 1	112	190	129	53					
	Outflow	Floc	62	107	54	28					
		RAS	79	128	87	35					
		Pre-STA 1	108	172	127	48					

inflows originating from the same source/watershed.

Soil Samples:

Intact soil cores from 9 transect stations in STA-2 FWs 1 and 3 were obtained (Figure 1). The inflow, midflow, and outflow locations along each transect were designated as benchmark sites where triplicate soil cores were collected. Soil cores were sectioned into floc (detrital floc material), RAS, and pre-STA soil (Figure 2). All samples were stored at 4°C until used for chemical analysis.

Methods used:

- Solution state ³¹P Nuclear Magnetic Resonance Spectroscopy (NMR). NMR spectra were acquired using an Avance III spectrometer manufactured by Bruker Bio-Spin operating at a field strength of 14 tesla (600 MHz) with an 51mm bore. Spectroscopy data were collected using TopSpin software (Version 3.2 pl5) while imaging data was collected using ParaVision 6.
- Solid state cross polarization magic angle spinning ¹³C NMR, using 3.2mm Low-E® CP-MAS.
- Conventional operationally defined P fractionation of soils.

Table 2. Organic P forms (mg kg⁻¹) of floc, RAS and Pre-STA soil samples identified by ³¹P NMR.

Figure 7. The concentration of the organic P forms along the flow path (from inflow to outflow).

Table 3. Organic C forms (g kg⁻¹) of floc, RAS and Pre-STA soil samples identified by ¹³C NMR.

Figure 8. The concentration of the organic C forms along the flow path (from inflow to outflow).

DISCUSSION AND CONCLUSIONS

- As the Everglades restoration efforts progress and water quality continues to improve, P and C cycle and associated pools will also respond in accordingly.

Figure 3. Avance III NMR (A), ³¹P NMR solution state samples (B), ¹³C solid state samples (C), extracted, filtered (D) and digested samples (E) for P determination.

Acknowledgements

A portion of this work was performed at the National High Magnetic Field Laboratory, which is supported by the National Science Foundation Cooperative Agreement No. DMR-1644779 and the State of Florida and in part by an NIH award, S10RR031637, for magnetic resonance instrumentation. Study was also supported in part by the South Florida Water Management District.

Total P extracted by NaOH-EDTA and total organic P determined by solution ³¹P NMR were positively correlated with the microbial biomass P (MBP) in EAV FW (P<0.005). Similarly, orthophosphate monoesters and diesters were positively strongly correlated with the acid and alkali extractable P in the EAV FW (P<0.005). Organic P forms showed negative correlation with all organic C forms except with O-alkyls. By contrast, apart from a correlation between diesters and MBP (P<0.005), there were no other correlations between OP forms with the P pools in the SAV FW. No correlation of monoesters with OC forms was recorded, while diesters had strong negative correlations with all OC forms.

- Significant gradients of P concentrations were observed both as a function of distance from inflow and with soil depth (floc, RAS, and pre-STA soils).
- Phosphorus loading increased the proportion of P stored as inorganic P in SAV systems and as organic P in EAV systems. The ratio of TPi/TPo in floc and RAS of EAV system was 0.5 and decreased with distance from inflow, suggesting accumulation of OP, while high ratios of up to 2.5 in SAV system indicated towards inorganic P accumulation in the floc and RAS.
- Although most soil P was stored as orthophosphate monoesters, soil organic P inputs were dominated by diesters, implying that plants and microorganisms highly controlled the composition of P forms.

Corresponding author: lilitvardanyan@ufl.edu